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SUMMARY 
A generalized continuum model for diatomic solids is presented in this study. Considering the relative displacement of a 
particle in a cell as a single director, the field and the constitutive equations of diatomic solids are obtained through the 
use ofToupin's [ 3] variational principle. Propagation of a longitudinal wave in such a medium is also reported, and the 
result found here is compared with those of lattice dynamics. 

1. Introduction 

It is a well known fact that most of the elastic materials are made of complex atoms rather than 
simple atoms. It is therefore apparent that, from the point of view of lattice dynamics, the 
internal structure of such solids is multi-atomic. The classical continuum theory of solids is 
based upon the assumption that each lattice cell behaves like a single material point particle and 
ignores the relative motions of constituent atoms in the cell. In another words, the internal 
structure of such a complex cell is not taken into account. As a result of this oversimplification, 
the field equations of classical continuum theories for nonpolar elastic materials give non- 
dispersive wave solutions. However, the results of phonon dispersion experiments (c.f. 
Brockhouse et al. [5], Harrison [6], and Wallis [7] show that the phase velocity changes with 
wave number. These facts have forced researchers to build up generalized continuum theories 
that may take the internal structure of lattice cells into account. In these theories the idea of 
classical rigid point particles is replaced by a generalized particle which may have local motions 
as well. Among such studies it may be worthy to mention the director theory of Toupin [3], the 
micromorphic theory of Eringen and Suhubi [8], and the multipolar theory of Green and 
Rivlin [9]. These theories which are mathematically complete, however, have found little 
applications in physical problems concerning the elastic solids. 

Starting from difference equations of diatomic lattices of infinite extent, Mindlin [10] has 
obtained the field equations for linear diatomic solids. Since the concepts of stress tensors and 
associated surface tractions are not introduced in [10], one is not able to solve any physical 
problem for which the boundary conditions are expressed in terms of surface tractions. The 
continuum theory ofdiatomic solids of finite extent is first given by Demiray [1, 2], in which the 
concept of partial stress is also introduced. In that work we have assumed that, from a 
mathematical point of view, a diatomic solid may be considered to consist of two simple elastic 
media, providing the appropriate interactions between the constituents. After introduction of 
such a mathematical model and partial stress tensors, it has principally become possible to 
solve any boundary value problem concerning diatomic elastic solids. 
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258 H. Demiray 

In this study, a generalized single continuum model (directed continuum) for diatomic solids 
is introduced. In building up such a model, each cell of the diatomic lattice is considered to be a 
generalized particle which may have local motions as well as the gross motion. Characterizing 
this local motion by a single director (d), the field, nonlinear and linear constitutive equations of 
such a generalized continuum are obtained by use of Toupin's [3] variational principle 
developed for directed media. A comparison between present model and the one presented in 
[1] is made and some special cases are discussed. Finally, using the field equations of present 
study, the propagation of longitudinal waves is studied and the values of material constants are 
obtained in terms of lattice characteristics. 

2. Kinematics and basic laws 

We consider an elastic body N 0 composed of diatomic molecules. In our previous works [1, 2] 
we have assumed that, from the mathematical view point, such an elastic medium may be 
considered to consist of two initially overlapping simple elastic media, providing the approp- 
riate interactions between the constituent particles. In other words, we implicitely assumed that 
initially both particles in a lattice cell occupy the same space point and ignored the orientation 
of one particle relative to the other in the same cell. Generally speaking, in order to locate a cell in 
a three dimensional E-space, we need six numbers or two vectors. If these two vectors are 
measured with respect to the same origin, one obtains the model introduced in [1,2]. However, 
if the location of one of these particles in a cell is described relative to the other in the same cell, 
the mechanical model so introduced will be conceptually different from the previous one. In the 
latter case, the vector connecting two atoms in one cell may be considered as a single director. As 
might easily be realized, the first model corresponds two interacting elastic solid continua, 
while the second one is built upon the assumptions of a single elastic continuum with a 
deformable director. In the present study we will be concerned with second model and 
formulate the problem accordingly. 

Now we consider an elastic body N o that is the collection of the same type of material 
particles to each of which a director is attached. Let the initial coordinate of a material particle 
be denoted by X and the associated director by D(X)*.  Upon deformation of the body, the new 
position of the same material point at time t will be denoted by x and the corresponding director 

by d, Figure 1. 
Thus the motion of such a generalized elastic continuum is described by 

x = x(X,  t), VX ~ ~o, t ~ I = It1, t2] (2.1) 

d = d(X, t), (2.2) 

such that x ~ X and d ~ D as t ~ tl, where t 1 is the reference time parameter. 
Equation (2.1) is one-to-one onto, so that it has a unique inverse, given by 

X = X(x,  t) (2.3) 

* In fact, the magnitude of this vector D corresponds to initial distance between two neighboring particles in a cell. 
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Figure 1. The motion of generalized body. 

The gross translational velocity of a generalized material particle 1 and its local (or micro) 
velocity are defined by 

~?x x Od x" (2.4.a, b) 
v-= Ot , v-=- & 

Similarly, the gross and local accelerations of a material particle are 

a -  0t z x' b =  Ot 2 x" (2.5a, b) 

Following Toupin's [3] director theory we introduce a function 

L(X, t) - L(X,x,d, 2, d,F, G,t) (2.6) 

called the action density. Here F = Vx, G = Vd, V - O/6X, t is the time derivative. The 
equations of motion and the boundary conditions for such materials are obtained from 
Hamilton's principle in the form of the variational equation 

~ f i f v L ( X , t ) d V d t + ~ i ( Z ' d x + W ' 6 d )  dVdt 

f i rs  fr 6d)dV:: + (T o.. 6x + H ~ 6d)dSdt - (P. 6x + Q. = 0, (2.7) 

where Vis the volume of undeformed body ~o, S is the material surface enclosing the body, Z 
and W are certain generalized body forces, T o and H ~ denote certain generalized surface 

1 Here, by a generalized material particle we mean the reference particle whose mass is the sum of masses ofall particles 
in a cell considered. 
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tractions, P and Q are certain generalized moments, and I - It,, t2]isthetimeintervalinwhich 
the motion of the body is evolved�9 The variations ax and 6d should vanish at t~ and t 2. 

Noticing equation (2.6), if one performs the variation (2.7) and makes use of the of the 
generalized Green-Gauss theorem one obtains 

fv  [(TKI'K -- Pt + Zt - 9z)axl + (H~t,K -- Qt + Wt - Rz)adt]dVdt 

+ f f  fs [(Tt~ - Tr'NK)aX'+ ( H ~  (2.8) 

where N is the exterior unit normal vector and other quantities are defined by 

8L 8L 3L 
TKz - 8FIK Pl 82 z 9t 8x I (2.9a) 

8L 3L 8L 
HKI= 8Glr , Q t -  od z, R l -  8d 1 (2.9b) 

Equation (2.8) is satisfied for all independent variations of ax z and c~d~ if and only if 

TKt.r + Zt = Pt + gt, HKI,K + Wt = Qt + Rt, in V, (2.10, 11) 

TKIN K Zt O, H KlN K = H ~ = l, on S. (2.12, 13) 

So far we have not said anything about the invariance requirements of the action density L. 
To make further progress in the problem, we will study the invariance requirements of the 
action density in the sequel. 

3. Invariance and conservation 

We shall say that two motions of a given medium differ by a Euclidean displacement if 

x*(X, t*) = Rijxj(X, t) + % d*(X, t*) = Riflj(X, t), t* = t + a, (3.1) 

where the starred quantities define one of the motions and the unstarred quantities the other. 
All quantities are referred to a common rectangular Cartesian inertial frame of reference, R~j is a 
constant proper matrix, and c i and a are also constant. 

It is postulated that the action density L is invariant under the transformation (3.1). The 
restrictions imposed by this requirement are given by 

8L , 8L 
- 0 ,  - - = 0 ,  Kvj ~=0,  (3.2) 

Ox i c3t 

where 

8L c~L 
K o - - d i ~  T-+FiK 

8Fj~ ,Juj 
OL 8L + d. i 8L (3.3) 
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With the conditions (3.2) and (3.3) in mind, consider now the variational equation (2.7) which 
summarizes the equations of motion, boundary conditions, and initial and final data. Equation 
(2.7) must hold for all admissible variations of 6x  i and 6di that are geometrically consistent. In 
particular it must be valid for 

(1) 6x,  = % c~d, = O, (3.4) 

(2) 6x  i = f2oxj, 6d i = f2ifl  j, 

(3) ~x i = 2 i, ~d i = d i, 

where 12~j = - f2jiis the constant and infinitesimal rotation tensor. The necessary and sufficient 
conditions that (2.7) hold for these special types of variations are: 

fve, dVi:-f, fs ri~ (3.5, 

f v L i j d V t s 1 7 6  d S d t -  

-f,i(xt,Z, +dE,%ldVdt=f, fvK , ldVdt=O, (3.6t 

fvF dVttl-fifs(T,%+H~ fv(Zi2,+W,d,)dVdt=O, (3.7) 

where, in (3.7), we have set 

E = P,xi  + Qf l ,  - L ,  (3.8) 

which we call the energy density, and in (3.6) we have set 

Lit = - L j i  = x[iP j] -k- d[iQjl, (3.9) 

which we call the density o f  angular momentum.  Inspection of(3.5), (3.6), and (3.7) shows that the 
difference between the values of total linear momentum, angular momentum, and energy of a 
body at times t 1 and t 2 is equal, respectively to the resultant linear impulse, the resultant of 
angular impulse, and the work done by the generalized forces Ti ~ H ~ Zi, and W/during the time 
interval I. 

From the definition (3.9) of the density of angular momentum one sees.that, in general, the 
angular momentum of a macroelement is not equal to the moment of the linear momentum. 
Also, from (3.5) and (3.6), one sees that the torque exerted on a body is not, in general, equal to the 
moment of the body forces Z~ and the surface traction Tf. 

We now specialize the problem and consider a directed medium for which the generalized 
momenta are assumed to be given by 

0 d' p,  _= pO2, + P2 ,, Q, p~ + d,), (3.10, 11) 

where po is the total undetbrmed mass density of~he medium, and pO is the initialmass density of 
particles associated with directors. 
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Substitution of (3.10) and (3.11) into (2.9a, b)2 yields the following differential equations 

gL ~?L 
Pi = ~32~-~ = p~ + p~ Qi = ~ = P~ + di)" (3.12, 13) 

Solving these two simultaneous partial differential equations for L, one obtains 

L = t 901-222 + pOd. 2 -]- p2-O ~"1J2 _ S(F, d, G, X). (3.14) 

Introducing (3.10), (3.11) and (3.14) into equation (3.8) the energy density is found to be 

~0 l J 2  E = p0�89 + po d . Yc + Pz~" + S(F, d, G, X). (3.15) 

Here the function S will be called as the strain energy density function of the generalized 
continuum. By inspection of equation (3.15) one sees that the total kinetic energy density of the 
medium is given by 

-0  l J 2  T = p~189 + P2~" + P od. :i = T~ + T~ + p~ ~. (3.16) 

As might be seen from equation (3.16), the total kinetic energy of the medium is not separable, 
i.e., the total kinetic energy is not the sum of the classical kinetic energy and directorial kinetic 
energy. These two types of kinetic energies are correlated through the last term of equation 
(3.16). The total kinetic energy is seperable if and only if the classical particle velocity is 
perpendicular to the director velocity. 

Inserting (3.16) into equations (2.9a, b), the generalized stresses, momenta and other 
interacting forces may be given by 

~Z 
Trl = ~FlK Pk P~ + p~ gk O, (3.17) 

QS 3 S  
--  , = P2(Xk -q- dk) , Rk ~d k HI a ~G~r Q~ o . - . (3.18) 

Thus, the field equations and boundary conditions can be re-expressed as follows 

od 
TKI, K q- pOfl = POJdl q- P2 l, i n  V, (3.19) 

TKlN K = Tl ~ on S, (3.20) 

Hrz, K + pog, _ R, = p~ + d,), in V, (3.21) 

HI, iN K = H ~ on S, (3.22) 

where Z t = pof~ and W~ = p~ t are respectively the total and directorial body forces per unit 
volume. 

Equations (3.17)-(3.22) are the material description of the constitutive relations and the field 
equations for the generalized continuum under consideration. In some cases it might be useful 
to express these quantities in terms of the values measured on deformed configuration. Let the 
Jacobian of the motion be denoted by d = det F. Multiplying the both sides of equations (3.19) 
and (3.21) by 1/d, and of (3.20) and (3.22) by dA/da,  where dA and da are the undeformed and 
deformed elementary areas, we obtain the following equations. 
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tkl,k q- ,oft = PXl q- P2dt , in v, 

t k l n  k ~ tl, on s, 

hkl,k + P2gZ -- /{l = P2(Sdl + ~/l)' in v, 

hktn k ~ -  hi, on s, 

(3.23) 

(3.24) 
(3.25) 

(3.26) 

where 

1 1 1 
tkt -- -J Tmekm hk' --- 7 H m F k m  ~ '  = -J Rl' t, =- V dA /da ,  

ht - H ~  p - po / j ,  P2 - po / j ,  nk = J d A / d a  Fkr~iK.  (3.27) 

Here tkl  , hk t  , t t ,  and ht are the generalized Eulerian stress tensors and associated surface tractions, 
p and P2 are respectively the deformed total mass density of the generalized material particles, 
and associated directors, and n k is the exterior unit normal of the material surface in the 
deformed configuration. 

Using the relations (3.17)2, (3.18)2, and (3.27) in equations (3.2) and (3.3), the condition that is 
to be satisfied by the generalized stresses and forces is given by 

~ijk(diRj h- t u + di, lhtj) = 0. (3.28) 

So far we have worked with the vector d and its gradient G = Vd. Since, in our case, D is a 
constant vector, it may be convenient to express the strain energy function 22 in terms of w 
---- d - D and S = Vw; where w corresponds to the relative displacement vector. In this case, the 
generalized stresses and reaction force R z take the following form: 

622 ~S ~Z 
T m = ~FtK H m ~3Sl ~ R t ~w l (3.29) 

Since N is a state variable, it must be form-invariant under the local rotation of the spatial frame 
of reference. We will, therefore, next study the implication of this requirement. LetM be a group 
oforthogonal transformations of the spatial frame of reference x ( M M  T = M T M  = I) and #, F, 
and g be the transformed values of w, F, and S. Then the following relations are valid. 

(~, F, S) = M(w, F, S). (3.30) 

The strain energy function S should be form-invariant under the transformation (3.30), i.e., 

S ( X ,  w, F, S) = 22(X, ~, F, S). (3.31) 

Such a requirement implies that the strain energy function should be a function of the following 
form (c.f. Spencer [4]) 

x =  z(x ,  c , r ,  B ), 

where 

(3.32) 

C = F T F ,  F = F T S ,  B = F T w .  (3.33) 

Here the superscript (T) denotes the transpose of the corresponding tensorial quantity. 
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Introducing (3.32) into (3.29) and noting the relations (2.21), the generalized stresses and the 
reaction force become 

02; 8Z 0Z 
TK, = 2 F,L + ~ S,L + ~ W, 

OCKL UI KL olJ K 
(3.34) 

0Z 0S 
H~, = 0"--,LK F'L' Rt - 0B K F,K (3.35, 36) 

By this form of constitutive equations, the condition (3.18) is identically satisfied. 
In some cases it is convenient to express the generalized stresses and reactive forces in terms of 

Lagrangian strain tensor EKL -- ~(CKL -- 5KL); where 5~L is Kronecker delta. If this is the case, 
the equation (3.34) takes the following form 

8Z QS 0S 
TKI - Fzr" + ~ StL + ~ w,, (3.37) 

8EKL Ol KL O~k 

while (3.35) and (3.36) formally remain the same. 
The set of equations (3.34)-(3.36) gives the most general form of constitutive equations for the 

directed medium considered. Various other nonlinear constitutive equations may be deduced 
from this general formulation. In what follows we shall study the linear constitutive equations 
only. 

4. Linear constitutive equations 

In order to be able to see some simple but obvious applications of the theory developed here, the 
linear constitutive relations play a central role. For a theory that is geometrically linear, the 
constitutive independent variables take the following form 

1 EKL =- ~(UI~,L + UL, K), lT'rL --- WK, L, BK -- Wr, (4.1) 

where U K and W K are respectively the Cartesian components of the classical displacement 
vector u and directional displacement vector w with respect to material coordinate X. 

For this purpose, it is convenient to expand the strain energy function Zinto  a power series of 
E,/~, and/~ as follows: 

Z = Z 0 .0[- Z1KB K -}- Z2KLEK L .~- Z3KLFK L ..~ Z4KLMEKLBM -[- ZsKLBKBL 

-[- Z5KLBKB L Jr- ~6KLMI'KLBM -}- ~7KLMNEKLEMN "-[- ~8KLMNFKLFMN 

.-~ -~9KLMNff~KL ['MN (4.2) 

where S o, Z1K . . . . .  Z9KLM N are, in general, functions of X. Throughout this work, we will 
assume that the body under consideration is homogeneous, so that these coefficients are 
constant. Here, we also note that some of these coefficients have the following symmetry 
relations. 

Z2KL = Z~2LK, Z4KLM = Z4LKM, Z5KL ----- "~5LK' 

"~7KLMN = Z7LKMN = ~--'7MNKL' Z8KLMN = Z8MNKL , Z9KLM N = Z9LKM N. (4.3) 
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The use of (4.2) in (3.35)-(3.37) gives the most general and linear constitutive relations for 
anisotropic materials; but we will not list them here. In this work we are rather interested in 
isotropic materials. For this particular case, the nonvanishing elastic moduli are: 

Z2K L = ~06KL, SaKL = fl06KL, S3KL = �89 

1 -t- �89 -t- ~)KM(~LM), STKLM N ~- 52(~KL(~MN 
1 1 1 

Z8KLM N ~ ~(ZI(~KL(~MN "~ ~O;2JKM(~LN q- ~3(~KN(~LM, 

S9KLM N -~- fllt~KLSMN "~- fl2(SKM(~LN ~- t~KNt~LM ). (4.4) 

Hence the strain energy function takes the following form 

x = So + ~oG~ +/~oG~ + � 8 9  + �89 ~ + ~G~GL + �89 ~ 

+ �89 + �89 + fl~ff.RRT'pp + fl2(/~KM/~MK + /~KM/~MK). (4.5) 

Introducing (4.5) into (3.35)-(3.37) and neglecting the powers of UK,L, WK,L and W r higher than 
one, the following linear constitutive equations are obtained 

TKt = t~IL[2ff~RRJKL At- 2#ff~r~L + fllFRRJKL ~- fl2(FKL -~ ELK)I, (4.6) 

HKt = (~IL[O~IFRRt~KL At- O~2['KL -~ ~3~'LK "q- fllERR6KL -~- 2fl2ff~KL], ( 4 . 7 )  

R t = 6u~(VBK), (4.8) 

where 6~ is the coordinate shifter. In arriving this result we have assumed that the medium is 
initially stress free (in general sense), i.e., TKt ~ HKt ~ 0 as/~ --,/~--, w --, 0. In this case the 
coefficients % and flo must vanish. 

In small deformation theory the difference between the material and the spatial coordinate 
systems may be disregarded. Hence the spatial description of the constitutive relations may 
be given by 

tkl = "~grrt~kl + 2#gU + f l~ .JkZ + fl2(~kl -~ ~Tlk), (4.9) 

hkt = Oqs + ~2s + ~3~7tk + fl*g,-~akZ + 2fl2gk,, (4.10) 

g k = VWk, 

where Jk~ is the Kronecker delta and the other quantities are defined by 

ekl = 5(Uk, l + UZ,k), ~kl -- Wk, Z, Wk =-- WKJkK. (4.12) 

For real elastic materials, in order to have a stable motion (or deformation), the strain energy 
density function must be positive for all admissible values of the generalized displacements. 
This requirement puts certain restrictions on the material constants, 2,/z, v, % and fl~. To this 
end, we decompose the tensors Fkt and ?Zk~ into equivoluminal and deviatoric parts as follows: 

~ 1 ~ "/  1 ~ ~r  ~ 
ekl = -3errJkl q- ekl, ~kl q- q- "~-- g~rrt~kl ~kt O)kl, 

where g'r, -- O, qY. = O, 03. = O, and 

1 - 57,6kl,  C% -= ~(Wk, l -- Wl,k). kl 

(4.13) 

(4.14) 
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Inserting (4.13) into equation (4.5) and noting the relations (4.14), the strain energy function 
becomes 

x = & + �89 2 + - + (; /2 + / , / 3 ) (g . )  

3 ~' "' + g( % + % + ~3)(~7,y + (% + 2flz/3)Y~,~qq +/aeklekl 

"~- ~0~ 2 "Jr- O~3) ~tkl~/kl "~ 2fl2etkl~kl . (4.15) 

In order that the strain energy function s be positive for all arbitrary variations of independent 
constitutive variables, the following inequalities must hold 

v_>O, ~ 2 - % > 0 ,  32+2/~=>0,  3 ~ 1 + ~ 2 + % > 0 ,  /~>0 ,  ~ 2 + % > 0 ,  

(32 + 2/z)(3,1 + ~2 q- ~3) -- (3~, + 2fl2) 2 ~> 0, fl(~2 -{- ~3) - 2fl2 2 ~ 0. (4.16) 

Introducing (4.9)-(4.11) into equations (3.23)-(3.26), the field equations and the boundary 
conditions are obtained to be 

(2 +/ . / )V(V " u) -'~ ~/VSu -~- (ill -~- fl2)V( V" 140 "~ f12 VEW + P f  = pit' + p2 ~, (4.17) 

(fl~ + fl2)V(V" u) + f lsVSu +(~,  + ~2)V(V" w) + %V2w - vw + P20 = Ps(it + w), (4.18) 

tkln k = tl, h~ln k = h r (4.19) 

These field equations and the boundary conditions may be used to determine the mechanical 
field completely. Before we give the solution o fan illustrative examp!e, it might be interesting to 
see the connection between the field equations and the constitutive relations ofdiatomic solids 
and directed (or oriented) continuum described herein. This is done in the remaining part of this 
section. 

Classical equations o f  diatomic solids: 

Following Demiray [1, 2-] the motion ofa diatomic solid viewed as the collection of two simple 
but interacting continua may be characterized by 

x (~) = x(~)(X, t), ~ = 1, 2. (4.20) 

Selecting the coordinates of one of the particles in the continuum, say ~ = 1, as the location of 
the generalized particle, the following identification holds true: 

X(kl)(X, t) --= Xk(X, t), X(kZ)(X, t) = Xk(X, t) + dk(X, t), 

F(1) _ FkK, m2) _--_ Fk K + GkK. (4.21) kK --  kK 

Employing (4.21 ) in equations (3.17) and (3.18) and performing the necessary differentiation we 
obtain 

TKt = ,~(a) + Pk ~0.:O) + .0,=(z) (4.22) 
~--IK OF~k~ ' = [Jl~k P'2"~'k ' 

~_r 0 x  
_ ,0.;(2) R k = - - ,  (4.23) HKl ~F}~ ) , Qk = t-'e~k , ~Wg 
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where po is the initial mass density of the species (1), i.e., pO = po _ pO. Comparing these 

constitutive equations with those of (3.6) and (3.7) of reference [11, we arrive at the following 
relations 

TKI = Tire) + T(K 2), HKl = T~ 2). (4.24) 

Similar comparisons can be made for the field equations. In this case, the equation (3.21) is 
equivalent to equation (2.9) of reference [ 11 while (3.19) is the sum of equations (2.8) and (2.9) of 
the same work. 

In the case of linear constitutive theory it is also possible to obtain some relations between the 
material constants introduced by two different view points (or models). Comparing equations 
(4.9) and (4.10) of this study with those of corresponding equations in [11, we have 

)u = a 1 + a 2 + 2a 5, /2 = a 2 + a 4 -~- 2a6, fll = a3 + as, 

f12 = a4  @ a6, ~1 : a3, (z2 = a4 + aT, ~3 = a4 -- aT, v = a o (4.25) 

where ao, a l , . . . ,  a 7 are the material constants introduced in [1]. 
As a result of these comparisons, one can see that there is one-to-one and unique 

correspondence between two models introduced for the mechanical description of diatomic 
solids. 

5. Plane harmonic waves 

To be an illustrative example, in this section we will study the propagation of plane harmonic 
waves in such a medium. For  simplicity and easiness in comparing present result with those of 
lattice dynamics, we only investigate the longitudinal waves; the transverse waves may be 
studied in the same manner. Assuming that the wave is propagating in the x 1 direction, in such a 
situation, the nonvanishing displacement components may be expressed by 

u 1 = U 1 exp[i(cot - kxj )] ,  w 1 = W 1 exp{i(e)t - kxl)] ,  (5.1) 

where co is the angular frequency, k is the wave number, and U1 and W 1 are the complex 
amplitudes of the wave. 

Introduction of (5.1) into (4.17) and (4.18), neglecting the body forces, yields the following 
homogeneous algebraic equations. 

[pco2 _ (). + 2 /2 )kz]Ut  + [pzco2 _ (ill -1- 2f lz)kZ]Wl = 0, (5.2) 

[p2co z - (fl~ + 2/~2)k2]U1 + [pzCO 2 - (ct 1 + c~ z + ~3)k z -  v]W,  = 0. (5.3) 

In order to have a nonzero solution for U1 and W~, the determinant of the coefficient matrix 
obtained from equations (5.2) and (5.3) must vanish. Thus, 

Pz(P - P2) O)4 - {P[(~I + ~2 "~ 0;3) k2 -t- V] + p2[(2 + 2/2) -- 2(fl 1 + 2flz)]k2}co 2 

+ {[(2 + 2#)(~ 1 + az + %) - (ill + 2flz)2] k4 + (2 + 2/2)vk 2} = 0. (5.4) 

By setting k = 0 in equation (5.4), the cut-off frequencies are obtained to be 

fp )1 vp 
col = ( p -  

2 P2 
0) 2 = 0. (5.5) 
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This result shows that one of these waves is acoustical, while the other is of optical character. 
In order to proceed further, one must know the values of material constants appearing in 

equations (5.4). Employing the lattice dynamic approach, the dispersion relation of a one- 
dimensional diatomic lattice is given in the Appendix. Comparing equations (5.2) and (5.3), 
with (A-8) and (A-9) the following relations are obtained 

• /71 + 2/?2 = E22 + ~Elz,  2 + 2kt= Eal + E 2 2 + 2  12, 

cq + c~ 2 + c~ a = E22 , v = 2E12/d 2, (5.6) 

where d is the length of a cell in diatomic lattices, and E~j are constants related to spring 
constants of the same lattice considered. These relations are not suff• to determine all the 
material constants presented in this study. In addition, one should also consider the shear 
motions of a diatomic lattice. 

Employing these relations in equation (5.4) the dispersion equation becomes 

Pz(P - Pz) c~ - {[PEzz + Pz(Ell  - Ezz)] k2 + 2pEtz/d2} ~~ 

+ [(EllE22 1 r~2 ~ 4  - 7g~lz1,~ + 2E12/d2(Ell + E2z + �89 z] = 0. (5.7) 

The coefficients of this equation are known in terms of lattice characteristics. 
For numerical calculations, it might be useful to introduce the following dimensionless 

quantities 

(j)2 __ 2ElzP  s 
P z ( P -  P2) d2 ' ~cl = Eli~El2 '  to2 = E22/E12' 

4 = kd, 7 = Pz/P. 

Introducing these quantities into equation (5.7), we get 

- - 2 , [ . 7 (1  _ 

+ _ _ ~ ( 1  - ~) (~ + ~ + �89 = o. (5.8) 
2 _l 

The roots of this algebraic equation can be expressed as 

(O~ z = A(~) + A~(~), (5.9) 
- - a t 1  

where A and A are defined by 

1 1 A - ~ { f f x ~  + y(K~ - ~c~)]4 2 + 1},  

A ==- A 2 7( 1 - 7) 4 [(t%tr 2 _ ~)~4 + 2(~q + ~c z + �89 (5.10) 

Here the subscript (ac) and superscript (op) stand for the acoustical and optical branches, 
respectively. 

From this general formulation, various limiting cases may be investigated. Some of them are 
given below: 
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(i) Limit of low frequencies: In this case, the terms comprising f24 can be neglected as 
compared to g22. Equation (5.8) may, then, be simplified to 

--  {�89163 4- 7(/s - - /s162  2 4- 1}~ 2 + 

+ 7(1 - 7)/4[(K1/s - ~6)r r + 2(/s +/s + �89162 = 0. (5.11) 

This equation gives only one root which is the frequency for acoustical waves. In addition, if the 
order of f2 is the same with that of # (that is, the wave number is also small), the foregoing 
equation becomes 

1 2 
2 (~:1 +/s + ~)~ , (5.12) 

which gives a constant phase velocity as 

vp = f2/r = [-7(1 - 7)(/s +/s + �89 § (5.13) 

This equation shows that for small wave numbers the wave with low frequency (acoustical 
wave) is not dispersive and the dispersion relation is given by (5.12) or (5.13). However, as is seen 
from equation (5.11), for larger values of the wave number, the wave turns out to be dispersive. 

(ii) Limit of high frequency: In this special case the last two terms of equation (5.8) may be 
neglected (this is particularly true for small wave numbers). Hence the dispersion equation 
takes the form 

~=  - [ I  + �89163 + 7(~, - / s 1 6 2  = o. (5.14) 

This, indeed, gives the frequency of the wave associated with optical branch. Equation (5.14) 
shows that even for small wave numbers the wave characterizing the optical branch is 
dispersive. 

Another point that we would like to discuss here is the behavior of function characterizing the 
optical branch around # = 0~ In the first place, it can be shown that r = 0 is an extremum point 
for the function f2op. In order to see whether the group velocity v~ p = df2op/d ~ is negative or 
positive around ~ = 0, one has to examine d2g2ov/dr 2 at ~ -- 0. Thus, differentiating equation 
(5.8) twice with respect to r and noting that g2op(~ ) = 1 and df2op/d# = 0 at ~ = 0, we get 

d2nd~ 2 r --- �89 - 7)2tc2 + 72/s - 7(1 - 7)/2]. (5.15) 

Depending on the sign of equation (5.15), the group velocity associated with optical branch may 
take positive or negative values around r = 0. If the foregoing equation is positive, i.e., 

(1 - 7)2K2 -t- 72/s > 7(1 - 7)/2, (5.16) 

the function Oop(r takes its minimum value at r = 0. Another words, the frequency of the wave 
increases with increasing wave number. However, if (5.15) satisfies the restriction 

(1 - -  7)2/s "~- 72/s < 7(1 - 7)/2, (5.17) 
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the point ~ = 0 is a maximum point for (2op. If this latter condition is valid, then the frequency 
decreases with increasing wave number. It should be noted that in the former (latter) case the 
group velocity is positive (negative). 

Conclusion 

Starting from a generalized continuum model (directed continuum) the field equations and the 
constitutive relations of a diatomic solid are derived through the use of a variational principle. 
An example problem concerning the one-dimensional harmonic wave propagation in such a 
medium shows that the field equations presented here give wave solutions that are dispersive. 
Moreover, depending on the positive or negative values of a function f (E  11, El2, E 2 2 '  P' t92) 
the group velocity may take positive or negative values (see equations (5.16) and (5.17)). It is 
particularly interesting to note that this relation depends also on mass densities of the medium 
under investigations. 

Here we have presented a simple application of generalized continuum theories to diatomic 
solids. Similar ideas may be extended to formulate the field equations and constitutive relations 
of multi-atomic solids. 

Appendix. Dispersion relations of one-dimensional diatomic lattices 

In the main part of this study we have needed the dispersion relation of one-dimensional 
diatomic lattices. In the Born model for NaC1, the interactions of only the nearest atoms are 
taken into account. For our purposes, however, we should consider the interactions of next 
nearest atoms as well as those of nearest atoms. 

We assume that the atoms of all kinds are spaced at equal distance, say d/2, so that the cell 
length is d, Figure 2. The particles of m a s s  M 2 will be numbered by even integers (2n, 2n + 2, 
etc.), the ones of mass M 1 by odd integers (2n - 1, 2n + 1, etc.). The spring constants associated 
with interatomic forces are shown in Figure 2. Let the displacements of these particles be 
denoted by ,,(1) and u(2Z),. Thus the motions of two different types of particles may be given by ~2n  + 1 

�9 '(1) = (2) 
k3(U2n+ 2 + --  ,~1,,~2n + 3 Mlu2.+ 1 b/(222 2U(212+ a) + b ~,,(1) + U(212_ 1 -- 2U(212+ 1), (A-l) 

lu u  2-1 - 24 2) + zU2, = k3(u~21~)+, + + u (2) - 2u{222). (a-2) 

In harmonic approximation, the displacements are expressed as 

@,)+1 = U1 exp{i[cot - ( 2 n  + 1)rh]}, u(222 = U 2 exp{i[cot - 2m/a]}, (A-3) 

where co is the angular frequency,/11 = kd/2 (k is the wave number), and U, and U 2 are the.  
complex amplitudes of the wave. 

Introducing (A-3) into (A-1, 2) the following homogeneous equations are obtained: 

paco 2 ( 4Ela sin 2 r h + U~ + sin 2 + U~ = 0, (A-4) 
- \ d z d 2 tll/2 ~d 2-} 

2E,z'~ + [p2co= (4d@ sin2 ~h 2El='~q 
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Figure 2. One dimensional diatomic lattice. 

where El l  = kid , Ez2 = k2d , and E l 2  = k3d are the partial Young's moduli, and Pl ~ M~/d, 
P2 = Mz/d are the partial mass densities of the diatomic solid under investigation. 

In local continuum theories we assume that the wave length is very large, or the wave number 
is very small, as compared to the celllength d. Ifq 1 = kd ~ 1, the function sin (kd/2) may then be 
approximated by kd/2. With this assumption, the equations (A-4) and (A-5) take the following 
form 

+ I  A6, 

- ~ -  k + d2 .j U 1 + p2092 -- E22k z 2E12 d2 U 2 = 0. (A-7) 

These equations, in their present form, are not  convenient  to compare  with equations (5.2) and 
(5.3). Noting the relation U2 = U1 + W1 (see equation (4.21)) and summing up the equations 
(A-6) and (A-7) side by side, we have 

[p(D 2 -- ( E l l  + E22 + EI.2/2)k2]U1 + [p2(D 2 - (E22 + E12/4)kz]W1 = O, (A-8) 

EP2092 --  (E22 + E12/4)k2"]U1 + [p2fo 2 - (E22 k2 -~- 2Elz/d2)]W1 = 0, (A-9) 

where p = Px + P2 is the total mass density. 
This is the dispersion relation for a wave propagating in a diatomic solid viewed as a directed 

continuum. 
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